
ISRAEL JOURNAL OF MATHEMATICS, Vol. 42, Nos. 1-2, 1982 

NONLINEAR VOLTERRA 
INTEGRODIFFERENTIAL EQUATIONS 

IN A BANACH SPACE 

BY 

RONALD G R I M M E R  AND MARVIN Z E M A N  

ABSTRACT 

We study the Cauchy problem associated with the Volterra integrodifferential 
equation 

u'(t)EAu(t)+ B(t-s)u(s)ds+[(t), u(O)=uo~.D(A), 

where A is an m-dissipative non-linear operator (or more generally, an 
m-fl~(~o) operator), defined on D ( A ) C  X, where X is a real reflexive Banach 
space. We show that if B is of the form B = FA + K, where F, K : X---~ D(D,), 
where D, is the differentiation operator, with F bounded linear and K and D,K 
Lipschitz continuous, then the Cauchy problem is well-posed. In addition we 
obtain an approximation result for the Cauchy problem. 

1. Introduction 

We consider the Cauchy problem associated with the Volterra integrodifferen- 
tial equation 

fo' (VE) u'(t)EAu(t)+ B(t-s)u(s)ds+f(t), u(O)=uoED(A), 

where A is an m-dissipative nonlinear operator (or, more generally, an m - 9  (to) 

operator), defined on D (A) C X, where X is a real reflexive Banach space. This 

problem has been previously studied by a number of authors including Chen and 

Grimmer [5, 6], Crandall, Londen and Nohel [8], Crandall and Nohel [9], Miller 

[15], and Miller and Wheeler [16]. 

The approach we are using is to associate with (VE) an abstract nonlinear 
differential equation in a somewhat larger Banach space. It is then shown that 

the Cauchy problem for the Volterra integrodifferential equation (VE) is 
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"well-posed" if and only if the Cauchy problem for the differential equation is 

"well-posed". Once this has been shown, one has available the nonlinear 

semigroup theory developed for nonlinear differential equations in a Banach 

space. In particular, the theory developed by Brezis and Pazy [4], Crandall [7], 

and Pazy [18] is useful in this regard as the operator C in the differential 

equation we examine is not dissipative, but rather C -  wI will be dissipative. 

While this is a trivial problem in the linear case (cf. Pazy [19]), it requires a great 

deal of effort in the nonlinear case to verify that the hoped for results are valid 

(cf. Pazy [18]). Besides the results obtained concerning the existence of a 

nonlinear semigroup, the "Trotter type" theorem developed by Brezis and Pazy 

[4] is particularly useful for our purposes. Using this result, we are able to obtain 

an approximation result for Volterra integrodifferential equations. 

The association of (VE) with a differential equation much the same as the one 

used here was developed by Miller [15] for the linear case. The use of semigroup 

theory was then developed in Chen and Grimmer [5, 6] in the case when (VE) is 

a linear equation. Similar work in the linear case relating (VE) with a differential 

equation has also been carried out by Miller and Wheeler [16]. For the case of a 

linear integral equation, rather than an integrodifferential equation, related 

work has been done in Grimmer and Miller [12, 13]. 

Nonlinear semigroup theory has also been used in the study of nonlinear 

integral equations by Barbu [3] and Dafermos [10]. The approach we use here is 

different from that in [3] and [10] which is more related to the study of functional 

differential equations. 

2. Preliminaries 

We shall everywhere assume that the nonlinear operator A is in m - 9  (~o); that 

is, that A -  oJI is m-dissipative for some o~ > 0, or alternately, ~ o I - A  is 

m-accretive for some o) > 0, with domain D ( A ) C  X where X is a reflexive 

Banach space with norm II II. The main distinction between an m-dissipative 

operator and an operator in m - 9  (o9) is that an m-dissipative operator generates 

a contraction semigroup while an operator in m-~(o))  generates a quasi- 

contraction semigroup {T(t)} which satisfies II T(t)x  - T(t)y II e IIx - y II. In 

this case the semigroup {T(t)} is said to be in Q,o. For a further discussion of this 

matter see Barbu [2], Brezis and Pazy [4] and Crandall [7]. 

The function f is assumed to be defined on [0, oo) with values in X and is in the 

Sobolev space W " ' P ( ( O , ~ ) , X )  of functions which together with their first m 

distributional derivatives are Bochner p-integrable functions, p > 1. We further 
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assume that B(t) is defined on D(A) and can be written as B(t)x = 
F(t)Ax + K(t)x. Here F, K : X ~ wr"'P ((0, ~), X)  are defined by (Fx)(t) = F(t)x 
and (Kx)(t) = K(t)x and have the property that F is bounded linear and K is 

Lipschitz continuous. Further, we ask that F and K have range in the domain of 

Ds, D(Ds), in Wm'P((O, oc),X) where D~ is the generator of the translation 

semigroup {S(t)} on W~'P ((0, ~), X)  defined by (S(t)f)(s) = f(t + s). We further 

require that D~K be Lipschitz continuous. 

These conditions on B, while they appear to be quite stringent, will, in fact, 

allow a wide variety of possibilities. In particular, we shall be able to apply our 

results to the integroditterential equation 

u,(t,x)= -A,u( t ,x)+~(u( t ,x) )+ [A2(t-s,x)u(s,x)+ y(u(s,x))]ds +f(t,x) 

where A~ = EI~j_~2 ao (x)O~ is a strongly elliptic second order partial differential 

operator  with smooth coefficients, A2 = El~l~_2b,(t,x)O7 is any second order 

partial differential operator  with smooth coefficients while/3 and y are Lipschitz 

Ii A° (DE) z'(t) E A ~o z( t )~Cz,  0 < t < ~ ,  

B D, 

where z is the transpose (w,u,v)* of (w,u,v) in X × X ×  W"'P((O,~),X)~Z. 
Also, z (0) = zo G D (C) where D (C) is the domain of C in Z. On Z we use the 

norm II(w,u,v)ll=llwll+llull+llvll~.~ where [I I1,-.~ is the norm on 
w ~.~ ((0, o~), x ) .  

REMARK 2.1. We note that since X is reflexive and p > 1, Z is also reflexive 

(cf., e.g., Adams [1]). 

DEFImTION 2.2. By a solution u( t )  of (VE) on [0, T), 0 < T =< oo, we shall 

mean a continuous function u : [0, T) ~ X with u (0) = uo, u (t) E D (A)  a.e. such 

that u(t) is locally Lipschitz and u'(t)CL~((O,T),X). Further, there are 

functions vl and v2 so that v,(t)EAu(t)  (i = 1,2) a.e. with v~ EL~((O, T),X) 
(i = 1, 2) and 

Io U'(t)=Vl(t)+ [F(t-s)v2(s)+K(t-s)u(s)]ds+f( t ) ,  a.e. 

DEFINITION 2.3. A function z defined on [0, T) with values in Z is said to be 

a solution of (DE) if z(t) is continuous in t on [0, T) and Lipschitz on every 

continuous functions. 

Associated with (VE) will be the equation 
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compact interval of [0, T), z (0) = zo, z (t) ~ D (C) a.e. in [0, T) and z '(t) E Cz (t) 

a.e. in [0, T). 

Our next proposition is central to our results and enables us to use semigroup 

theory. 

PROPOSITION 2.4. Suppose for zo = (w,,, uo, vo)* E D(C),  (DE) has a unique 
solution z ( t )=(w( t ) ,u( t ) ,v ( t ) )*  on [0, T), T<oc.  Then if f=vo ,  u(t) is a 

solution of (VE) on [0, T). Conversely, if (w0, uo, v0)* E D(C) and u(t) is a 
solution of (VE) with vo = f  then (w(t), u(t), v(t))* is a solution of (DE) with 

w (t) = w,, + f[, w,(s )ds and 

S' v ( t ) ( s ) = f ( t + s ) +  [F( t - ' r+s )v2(r )+K( t - ' c+s)u ( ' r ) ]dr .  
) 

PROOF. If z(t) is the unique solution of (DE) with z o E D ( C )  then we see 

that wo E X, u,, E D(A ) and vo E D(D~), Also, w' E Au is in L~((0, T), X) for 
each T > 0 .  Thus, F w ' C F A u  and is in L~((O,T),Wm'p((O,°s),X)) as  e is 

bounded linear. Similarly, D,F is also bounded linear so that D y w '  is also in 

L~((O,T),Wm'P((O, oc),X)). In fact, for T < ~ ,  Fw' and DsFw' are in 

L~((0, T), W"'P((0,oc),X)), as are Ku and D~Ku since K and DsK are Lipschit- 

zian. It now follows from Barbu [2; p. 32 Remark (j)] that the generalized 

solution 

y(t)  = S(t)v,,+ S(t - r)(Fw'(r)+ Ku('r))d~" 
) 

of the equation 

y' = D~y + Fw'(t) + Ku(t) 

is in WI"((O, T), W ''p ((0, ~), X)) and satisfies this equation almost everywhere in 

(0, T). Also, since Ds generates the contraction semigroup {S(t)}, there can be at 

most one such solution. 

We see that (w(t), u(t), y(t))* satisfies (DE) and so y(t) must equal v(t) for 

t => 0 by uniqueness. Hence in Wm'~((0, ~), X), 

f0' v(t) = S(t)v,,+ S(t - ~')(Fw'(z)+ Ku(z))d~" 

and since v( t )ED(D~) ,v ( t ) ( s )  is absolutely continuous. So if f ( t ) =  Vo and 

s 2 0 ,  

f v ( t ) ( s ) = f ( t + s ) +  [ F ( t - r + s ) w ' ( r ) + K ( t - r + s ) u ( r ) ] d r .  
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In particular, 

v(t)(O) = f ( t )+  fo' [F(t - ~')w'0-) + K(t  - r )u  (r)]dz. 

Now since u ' E A u  +800 a.e. in (0, T), 

fo u ' ( t )~  A u ( t ) +  [F(t - r)w'( 'r)  + K(t  - ¢)u (r)]d'r +f( t ) .  

Thus, 

u'(t) ~ Au  (t) + (jo' B(t  - z)uO')dT + f(t) ,  a.e., 

u(0) = Uo, u ( t ) G D ( A )  a.e., u is continuous, Lipschitzian on every compact 

interval and u'(t) ~ L~((O, T), X )  for every T < oo. 

Now let (wo, Uo, Vo)* E D ( C )  and suppose u is a solution of (VE) with vo = f. 

Since v z E L  ~, Fv2( t )+Ku( t )  is in D(Ds) a.e. in t and Fv2(t)+Ku(t) ,  
D~ (Fv2(t)+ Ku (t)) are in L 1((0, T), WIn'P((0, oo), X)). Thus the generalized solu- 

tion 

fo' (G.S.) v(t)  = S(t)vo+ S(t  - ~')(Fvz(r)+ Ku(z) )dz  

of v ' =  Dsv + Fvz(t)+ Ku(t )  is in W1'1((0, T), Wm'P((0,oo), X)) and satisfies the 

equation a.e. From (G.S.) we see that v ' E  L~((0, T), W"'P((0,~),X)) and as 

VOW-f, 

Io' v ( t ) ( s ) = f ( t + s ) +  ( F ( t - z + s ) v 2 ( ' r ) + g ( t - r + s ) u ( ~ ) ) d ~ "  

and 

~0 ~ v(t)(O) = f ( t )+  (F(t - r)v2(~')+ K(t  - z)u(z))dz. 

Thus, u satisfies u' = vl(t) + 8or (t) a.e. Now define w (t) = wo + f'o v2(s)ds. Then 

w'@ L~((O, T ) , X )  and (w, u,v)* is a solution of (DE). 

REMARK. If (DE) has the property that solutions are unique if they exist, 

then as wt(t ) = wo + f'o vl(s )ds is another choice we must have o~(t ) = v2(t ) a.e. 

Proposition 2.4 now allows us to examine the differential equation (DE) to 

obtain corresponding results for the equation (VE). In particular, if we show that 

C generates a semigroup {T(t)} we know that for z o E D ( C ) ,  T(t)Zo is the 
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unique solution of (DE) with initial condition Zo. Further, if z~ is also in D (C), 

we will see that 

[I T(t)Zo - T(t)z~ II <= Me ~' 11Zo - z~ II 

where M and o are positive constants. Thus, we obtain existence, uniqueness 

and continuity with respect to initial conditions for solutions of (VE) with 

(0, uo, f)* E D(C). 

3. Main results 

Our main results concern the well-posedness of (VE). In a later section we 

shall discuss a "Trotter type" theorem. 

THEOREM 3.1. Suppose A is in m-~)(w) ,  B = FA + K where 

F, K : X--* D(D, )  with F bounded linear and K and D,K  Lipschitz continuous. 

Then C generates a semigroup of nonlinear operators {T(t)} and T(t)Zo for 

Zo ~ D ( C )  is the unique solution of (DE). 

THEOREM 3.2. Suppose A is in m - 9  (~o), B = FA + K where 

F, K : X ~ D (D,) with F bounded linear and K and D,K Lipschitz continuous. 

Then (VE) is well-posed. That is, (VE) has a unique solution for Uo and [ where 

(0, Uo, [)* E D ( C) and if (0, ul, g) E D ( C ) also, then if u~( t ) is the unique solution 

of (VE) with Uo and f replaced with u~ and g, 

II u (t) - u~(t)II =< Me ~'([l Uo - u, II + IIf - g II,,.p) 

where II II-.P is the norm on W~'P((O, oo), X) .  

EXAMPLE 1. An integrodifferential equation which satisfies the conditions of 

Theorem 3.2 is 

u , ( t , x )=  - A u ( t , x ) +  a( t  - s ) A u ( s , x ) d s  + f ( t , x ) ,  

where X = L2(I~), p > 1, 1~ a bounded domain in R" with smooth boundary, 

a ( t )E  C~(R+), and A is a nonlinear differential operator of the form 

A u =  ~ (-lyD~A~(x,u,'",Dmu), 
I,, I -<- .1 

where A,  (x, ~) are real functions belonging to C=(~q x R m) and satisfying the 

growth conditions 

(1) t A , ( x , ~ ) l + C ( l ~ l + g ( x ) )  for some g E L 2 ( O )  
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and the monotonicity condition 

(2) ~ (A~(x,~)- A~(x, 71))(~ -~)~)>=O. 

Defining a : Hm(l))× Hm(l))--~ R by 

a(u,v)= ~, f A~(x,u,...,Dmu)D~vdx 
. in 

one obtains on the space V, H~(l))  C V C H m (l)), a map .4 : V--> V', the dual 

of V, which is maximal monotone. If one restricts fi~ so that 

D(A)={uEV: .6uEL2(~)} ,  Au=Au, u~D(A), 

then A is maximal monotone on L Z(l~) and, hence, m-accretive there. See 

Barbu [2, p. 49]. The rest of the conditions of Theorem 3.2 are easily verifiable. 

Operators similar to A which lead to similar examples can be found in Lions 

[14]. 

EXAMPLE 2. Another  integrodifferential equation which satisfies the condi- 

tions of Theorem 3.2 is 

u,( t ,x)= -A ,u( t ,x )+C~(u( t .x ) )+  [A2( t -s ,x)u(s ,x)+~,(u(s ,x) ) ]ds  +f ( t ,x )  

where X = L_~(fl), fl  a bounded domain in R" with smooth boundary, 

A, = ~. as (x)O:, D(A, )  = g2(fl) n g~(n), 
I~J~2 

is a strongly elliptic second order partial differential operator  with coefficients 

a~(x)~ Co(fi), A,_ = Ej~l,gb~(t,x)O~ is any second order partial differential 

operator  with coefficients b~ (t, x)E Co (R+x 1~) (more generally A~ can be any 

second order pseudo-differential operator  in the x-variables varying smoothly in 

t), and /3 and y are Lipschitz continuous functions. 

To show that the example is covered by Theorem 3.2, we first show that 

- A t + ~  is an m-@(~o) operator.  Indeed since -(A~+M), for some A, 

generates a Co semi-group of contractions, it is m-dissipative. Hence - A~ - M 

+/3 - ~o~I is also m-dissipative, where w, is the Lipschitz constant of /3. Thus 

- A ~ + ] 3  is an m-~(~o) operator,  where ~o = A +ml. 

Next, we will demonstrate that A,  + y can be written in the form F(A~ + ~) 
+k ,  where F is a bounded linear operator  on L2(FI) and K is Lipschitz 

continuous. The requirement that F and K have range in D (D,) and that D,K 
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be Lipschitz continuous will follow because of the smoothness of the coefficients 

of A2. 

Let F = A 2 L ,  where L is a left parametrix of - A ~ ,  i.e., L ( - A ~ ) = I +  T, 

where I is the identity and T is a pseudo-differential operator  of order - 2. L is 

also a pseudo-differential operator  of order - 2. (For the construction of L and 

T and the properties they satisfy, see L. Nirenberg [17].) 

Then 

Hence, 

F ( -  A ,  + [3)= A : L ( -  A ,  + fl) 

= A 2[L ( - A,)] + A2Lt~ 

= A2(I  + T)  + A2LI3 

= A2 + A 2 T  + A2L~.  

F ( -  A ,  + ~ ) +  K =  A~_+7, 

where K = - A 2 T  -A2LI3  + 7. What is left to prove is that F is bounded and K 

is Lipschitz continuous. Since 7 and/3 are defined to be Lipschitz continuous, it 

suffices to show that A2L and A 2 T  are bounded on L,(i)). This follows 

immediately from the fact that A~L and A 2 T  are both pseudo-differential 

operators of order 0. 

4. Proof of Theorem 3.1 

We have identified with the initial value problem associated with the 

integrodifferential equation the abstract initial value problem 

(DE) z '  E Cz, z (0) = Zo, 

where 

Z = X x X × W ' * ( ( 0 ,  oc ) ,X)  and C = A & . 
B D,  

We can decompose the matrix C as follows: 

C = 
[o, A, o 

O, A, 0 + 0 o 
O, FA - D y ,  D~ D~F + K 

= P ICIP + Cz 
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where 

[i °°] [i -'°] [i ° °] Cl = A 0 , P = I 0 , C2=  0 30 • 
0 Ds - F  I D s F + K  0 

Hence 

C = P- ' (C ,  + PC2P-')P.  

We will prove that (DE) has a unique solution by showing that C generates a 

semi-group. We will demonstrate this after first showing that C~ + PC2P -~= 

PCP -2 belongs to m-~(oJ ') ,  where to' is some constant to be determined later. 

We will prove this in a series of steps. 

LEMMA 4.1. C1 - ooI is m-dissipative if A belongs to m-@(oJ). 

PROOF. Since Ds generates a contraction semi-group, Ds is m-dissipative. 

Hence, since A belongs to m-~(oJ) ,  C~-  wI is m-dissipative. 

We will next show that PC2P -~ - ~ I  is dissipative, where ~Ol is the Lipschitz 

constant of PC2P -~. In order to do this, we need the following lemma: 

LEMMA 4.2. 3o(V) is bounded if v ~ Wm'P((O,o~),X), m >= 1. 

PROOF. Let D_ be the left derivative. Then 

D-llv II p = D-(I[ v 112Y '~ 

= e (ll v 112y'~-'D_(ll v 112). 
2 

Now IIv II 2 -- <v,/(v)), where ( , )is the pairing of X and X*, It" I1 is the norm of 

X, and j ( v )  is a duality mapping. (See Deimling [11] for more details.) Then, 

D-II v II p = 2 e II v F2O_<v ,  j (v ) )  

- p II v IIP-~(v', j tv ) ) .  

Integrating, we have 

io [Iv IlP-2(v',j(v))dy >= D_ Ilv~e dy = -I[v(O)[lP 
P P 

Thus, 

II v(°)ll'  ~ ~o  I<v' , j (v) l lv  I1'-~)1 dy. 
P 
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By H61der's inequality, we then have 

if l ip  + 1/q = 1. Hence 

II v (o)11" ---- p II v'll .  II v 117", 
since 

This implies that 

tl v (o)11 ~ p"" II v' l lTIt v IIg 'q 

If we define II otb,p to be the norm associated with W re'p, the last inequality 

implies that 

More generally, we have 

LEMMA 4.3. 

II ~o(v)l l  = II v (o)11-~ c I1 ~ I1,.,. 

Ilao(v)llu cllv I1~,~ i f m = > l .  

PC:P -~ - wzI is dissipative. 

PROOF. PC2P -j is shown to be bounded and Lipschitz continuous by 

appealing to the conditions imposed on K and F and the consequence of Lemma 

4.2. Hence,  if we choose to~ to be the Lipschitz constant of PC2P ~, we make 

PC2P -~ - t o l I  dissipative. 

We are now able to show that P C P - I ~  m-~(to~ + to). 

LEMMA 4.4. C~ + PC2P -~ - (w + w~)I is m-dissipative. 

PROOF. Let  S = C ~ - t o I  and T = PC2P - t - w r L  Since S and T are both 

dissipative, it suffices to show that R ( 1 -  A (S + T ) ) =  Z for some A > 0. 

We consider the equation [ I  - A (S + T)]y ~ z. We shall show that there exists 

a solution y for each z E Z. Since S is m-dissipative, R ( I - A S ) =  Z. Hence 

L z  = ( 1 - A S ) - ' z  exists for all z E Z and is non-expansive. Thus, if 

[ I - h ( S + T ) ] y ~ z ,  then ( I - A S ) y - A T y ~ z .  This would imply that y =  
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J , (hTy  + z). To show that this y exists it suffices to show that the mapping 

Wy = J~ (ATy + z)  has a fixed point, for every fixed z. 

However ,  

This implies that 

W y , -  Wy2 = L (,~ Ty, + z ) -  L (,~ ry2 + z ) .  

I vcyl - wy21_-<, [ T y , -  Ty~4. 

Since T is bounded and Lipschitz with Lipschitz constant M, 

I W y , -  Wy2t<----hMly,-y2[. 

Now choose A so that AM < 1. We have thus shown that W is a contraction 

mapping which ensures it of a fixed point. 

PROPOSmON 4.5. The initial-value problem 

r'(t) E (C~ + PC2P ~)r(t), r(0) = r, 

has a unique solution r(t) = S(t)r,,, where S(t)  is a semigroup in Q . . . .  . 

PROOV. Since C~ + PC2P -~ ~ rn-~(w + oJ~), by theorem 1.4 in Crandall [7] 

(see also the remark following chapter 3, theorem 1.3 in Barbu [2]), 

S(t)r = lim I + t  (c ,  + PC2P ' ro 
n ~  n 

exists for t > 0 for uo C D(C,  + PC2P ~) and S(t)  belongs to 

Q . . . .  (D(Ct+PCzP-~)) .  S( t )  is defined on X × D ( A ) × D ( D s ) .  Since X is 

reflexive, then so is X x X × W"'P((O,~),X). Hence,  by corollary 1.1 of chapter 

3 of Barbu [2], r( t )= S(t)ro is a unique solution of 

r'(t) E (C~ + VC2V-')r(t), r(O) = ro. 

We are finally able to show that C generates a semi-group. 

PROOV OF THEOREM 3.1. Consider the semi-group T ( t ) =  P-'S( t )P,  where 

S(t )  is defined in Proposition 4.5. T(t)  is defined on P-~(X x D ( A ) ×  D(Ds)). 

However ,  P - '  maps X x D (A)  × D (Ds) into X × D (A)  × D (Ds). Hence T(t)  is 

actually defined on X × D ( A ) ×  D(Ds). To see this we note that 0] 
p - l =  I 0 . 

F I 
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Then 

[!' !]I:]w iw:u] [w] 
I = = u~ . 

F LFu + v vl 

If w C X ,  x E D ( A ) ,  y CD(D~) ,  then since D ( A ) C X ,  w , = w + u E X ,  u , =  

u E D ( A )  and since F:X---~ D(Ds) ,  v, = Fu + v E D(Ds).  

Thus r ( t )  is defined on X x D ( A ) x  Wm'P((O, oc),X) (since 

D ( D , )  = WmP((0,oc), X)). 

Now r(t)  = S(t)ro satisfies 

(4.1) r ' E  (C, + PC2P-~)r, r(O) = ro = Pzo. 

If we let z ( t )  = T(t)zo, then since r(t) = Pz( t )  is a unique solution to the Cauchy 

problem (4.1), 

(4.2) (Pz (t))' @ (C~ + PC2P-')Pz (t), Pz (0) = ro. 

Since P is linear and constant,  (4.2) implies that 

z ' ( t ) E P  ' (C ,+PC2P- ' )Pz ( t ) ,  z ( 0 ) = P  ' ro=z, .  

Hence z ( t ) =  T(t)zo is a unique solution to the Cauchy problem 

z'  ~ Cz, z (0) = zo. 

Finally, T( t )  is a semi-group satisfying 

11T(t)yo- T(t)y ,  II = I le- ' s ( t )Pyo - e - ' s ( t )Py , t l  

-<-liP-' II I l s ( t )Pyo-  s(t)Py,ll  

< IIP-'II e'~'+~)' IlPyo- Py,tl 

=< II P-' II II P I1 e (~, *~' II yo - y, [I 

<= Me(~,+~)'t}yo- y,I I. 

5.  A p p r o x i m a t i o n s  

In this  s e c t i o n  w e  c o n s i d e r  the  e q u a t i o n s  

fo u ' . ( t ) E A . u . ( t ) +  B . ( t - s ) u . ( s ) d s  +f ( t ) ,  

(VE°) 
u.  (0) = Uo ~ D ( A . )  = D ( a ) .  
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Here B, = F , A .  + K,  where F. and K. have range in the domain of Ds, K. and 

D , K  are Lipschitzian while F, is bounded linear on X. Also, A,  ~ m - ~  (~o,) and 

[ ~ W "'p ((0, ~), X). It follows from our previous work that (VE,)  is well posed. 

We are able to prove the following theorem related to theorem 6.3 of [6]. 

THEOREM 5.1. Assume  that IIf.-Fl[~0, IIO,F~-DsFl[~0 and K , - - * K  

uniformly on bounded sets. Further, assume A .  E m - ~  (o~) and A ~ m - ~  (to) 

where 0 <= oJ~, oJ < a < oo for some constant e~. Suppose also that there exists )to > 0 

so that if J"~ = (I - AA,)- t  and £ = (I - AA )-I, JTu ~ £ u  for every u E X and 

0 < A < )to. I f u ,  (t) is the solution of (VE~) then l i m ~  u, (t) = u(t )  uniformly on 

compact t intervals. 

PROOF. Consider the differential equations 

(DE. )  z" ~ C~z.,  z.  (0)= Zo 

and the operators 0] 
P . =  I 0 , 

- F .  0 

o ?] 
C " =  0 o , 2 

DsF, + K .  

[i'  0] P ~  = I 0 , 
F~ 0 o] 

C~ ' =  A.  0 , 
0 Ds 

C n = P~'(C~+ P.C~P~')P..  

Now, to show that zn converges to z uniformly on compact t intervals we shall 

consider instead the problems 

r" E (C7 + PnC~P ~')r,, r' ~ (CI  "~ PC2P-~)r. 

We shall show that r, ~ r on compact t intervals and then since r, = S.zo and 

T, = P:*S,P,,  we will show z, ~ z on compact t intervals. We relabel P,C'~P: t 

to be C7 and note that ( I -  AC~) -* is given by 

0 0 ]  
(I - AA. )-i 0 

0 (I - AD, )-' 

)tC1) Zo---~ (I  - )tC0-1Zo for every z ~ Z. Now C n is so that by hypothesis, ( I -  , -1 3 

bounded uniformly so that C~'+ C" 3 is in ~ ( a l )  for some constant ol1>0 and 

( I -  AC~'- )tC~') -~ exists as a single valued operator and is given by 

(I - A C T ) - ' ( I -  A C T ( I -  ACT)-~) - '  or JT . , ( I -  AC~J].,)-' 
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where J~ , l  = ( I  - AC~')-'. For  later convenience  we define J ° , l  = ( I  - ACt) -~. Now 

as JT,~ is Lipschitzian with Lipschitz constant  (1 - A a ) - '  because C7 E ~ (a) ,  we 

see that ( I  - ACTJT.I) -~ exists for 0 < A < Ao where  AoCs(1 - Aoa) -~ < 1 and C5 is 

a Lipschitz constant  for C~ for all n. Indeed,  ( I - A C T J T A ) - ~ z  = g ,  or  z = 

( I  - ACTJT.l)g, is uniquely solvable for g, given z since T~,~g = z + ACTJT,lg is a 

contract ion map with uniform contract ion constant  AoCs(1-  Aoa) - '= -a2 .  Thus,  

for each n there is unique g, such that 

g. = z + AC~J"~,~g. or 

We note that  g. ~ go. Indeed,  

n n 0 0 
Jig, - gol[ = [[AC3Ja.,g, - XC3J,,,goll 

Hence ,  

g. = ( I  - A C " ' "  ~-~z 3 d A , l J  • 

el n n r t  21_ n rl <-[[Xf3J~.~g, - a f  ~J~.~goll I t~f  3J~.,go- ~c°J°.,goll 

= A . . A C  ~-o ,, . . , . < a 2 l l g . -  goll+ II C3J~ , lgo -  3Jx. ,got l+l lAC3Ja, ,go-AC3J°,go[[  

_~ C n o IIg~ - gol[ (1 - ~2)-~ACsIlJT.lgo- J ° . , go l l  + (1 - , x~ ) - 'A  II 3J,.,go- c3J°.,goll 

and since " 0 J~.,go---~ J~,~go and C3v  ~ C3v for all v E Z we see that  g, ---> go as 

n --* 00. That  is, 

( I  - AC~J~, l)- ' z  ~ ( I  -- Af3J° , , ) -~z .  

It now follows that  

or  

J~,,(I  - XC~J~,,)-1z ~ J ° , ( I  - AC3J° , t ) - ' z  

( I  -- A C T -  AC~) - ' z  ~ ( I  - AC, - AC3)-lz. 

Now as C ] ' +  C~ and C1 + C3 are in ~ (or1) it follows that  S. (t)zo--~ S( t )Zo  (cf. [4, 

t heorem 3.1]). Hence ,  T,  (t)Zo = p ~ I S ,  ( t )P ,  zo--* P - I S ( t ) P z o  = T(t)Zo.  This con- 

cludes the proof  since 7",( t )Zo= ( w , ( t ) , u , ( t ) , v . ( t ) )  and T ( t ) Z o =  

(w(t), u(t), o(t)). 
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